The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X X X X 1 X X X 1 1 1 1 1 X X X X X X X 1 1 1 X^2 X^2 X^2 X^2 X^2 X^2 X^2 X 1 1 1 1 1 1 1 1 0 X^3 0 0 0 X^3 X^3 X^3 0 0 0 0 X^3 X^3 X^3 X^3 0 0 0 0 X^3 X^3 X^3 0 0 X^3 X^3 X^3 0 X^3 X^3 0 0 0 0 X^3 X^3 X^3 X^3 X^3 0 0 0 X^3 X^3 X^3 0 0 X^3 X^3 0 X^3 X^3 0 0 0 0 X^3 0 X^3 X^3 0 0 0 X^3 0 X^3 X^3 X^3 0 0 0 X^3 X^3 X^3 X^3 0 0 0 0 X^3 X^3 X^3 X^3 0 0 X^3 X^3 0 0 X^3 X^3 0 0 0 X^3 X^3 X^3 X^3 X^3 0 0 0 X^3 X^3 X^3 0 0 0 X^3 X^3 0 X^3 X^3 0 0 0 0 X^3 X^3 X^3 X^3 0 0 0 0 0 X^3 X^3 0 X^3 X^3 0 X^3 X^3 0 0 X^3 X^3 0 0 X^3 X^3 0 0 X^3 X^3 X^3 X^3 0 0 0 0 X^3 X^3 0 X^3 X^3 0 0 0 X^3 X^3 0 X^3 X^3 0 X^3 X^3 0 X^3 X^3 0 0 0 X^3 X^3 0 0 X^3 X^3 0 0 X^3 X^3 0 generates a code of length 62 over Z2[X]/(X^4) who´s minimum homogenous weight is 61. Homogenous weight enumerator: w(x)=1x^0+28x^61+82x^62+6x^64+4x^66+4x^69+2x^70+1x^80 The gray image is a linear code over GF(2) with n=496, k=7 and d=244. This code was found by Heurico 1.16 in 0.125 seconds.